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SUMMARY: This publication addresses the issues of modeling, uncertainty quantification, model 
validation and numerical predictability. With the increasing role of numerical simulation in science, 
technology as well as every day decision-making, assessing the predictive accuracy of computer models 
becomes essential. Conventional approaches such as finite element model updating or Bayesian 
inference are undeniably useful tools but they do not fully answer the question: How accurately does 
the model represent reality? First, the evolution of scientific computing and consequences in terms of 
modeling and analysis practices are discussed. The intimate relationship between modeling and 
uncertainty is explored by defining uncertainty as an integrate part of the model, not just parametric 
variability or the lack of knowledge about the physical system being investigated. Examples from nuclear 
physics and structural dynamics are provided to illustrate issues related to uncertainty, validation and 
predictability. Finally, feature extraction or the characterization of the dynamics of interest from time 
series is discussed. 
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I. INTRODUCTION 
 

Today’s computational resources make it more than ever possible to model and analyze complex 
phenomena characterized by complex geometries and boundary conditions, multi-physics, nonlinear 
effects and variability. An example of such resource is the U.S. Department of Energy’s Accelerated 
Strategic Computing Initiative (ASCI) that has developed several platforms able to sustain over 3 x 
10+12 operations per second (or 3 TeraOps) by distributing computations over arrays of more than 
6,000 processors. The next generation of ASCI computers is expected to reach 30 TeraOps by the 
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year 2004 with the goal of approaching 100 TeraOps a few years later. Examples of problems requiring 
access to these multi-physics codes and massively parallel architectures include global climate 
prediction, epidemics modeling, computational molecular dynamics, thermo-nuclear physics and 
complex engineering simulations. Reference [1] discusses the overall ASCI program and its objectives. 
 

In addition to improving computational resources, as we know them today, groundbreaking 
discoveries are being made in the area of quantum computing, a field thought to be an elegant but 
impractical theory only a few years ago. This technology enables scientists to store information (bits of 
zeros and ones) as positive or negative spins of elementary particles that form the building blocks of 
molecules. Immediate and obvious advantages are infinitely large memory sizes and rapidity of access to 
the information bounded only by the speed of light. Moreover, the theory of quantum mechanics states 
that an elementary particle may feature positive and negative spin values simultaneously. Thus, a single 
particle may potentially store two bits of information at once. Just like a “conventional” computer 
combines analog bits to perform an operation, a quantum computer would combine the spin values of its 
elementary particles to add and multiply numbers or search a database. Since one particle can store two 
pieces of information, two particles can access 22 bits. If a very small number of particles can be 
stabilized, say, no more than 1,000, then this quantum computer could potentially access 2-to-the-
power-10+3 bits simultaneously. Assuming that the multiplication of two 256-digit numbers involves 10+5 
bits of information, this translates into 10+48 TeraOps of computing power for a single molecule! 
Practical difficulties such as verification algorithms and the instability of this information storage 
technology (typically, a particle may randomly change its spin value as often as every 10-15 seconds) are 
currently being addressed at Los Alamos and other national laboratories and university research centers. 
 

Quantum computing will probably not offer any practical outcome for several decades but it is 
undeniable that unprecedented computational resources are becoming available. What will be the impact 
on our modeling capabilities and analysis practices? 
 

Obviously, the hypothesis sustaining the development of ASCI-class computing resources is that 
predictive accuracy can be achieved if enough “details” and “physics” can be included in the numerical 
simulation. For example, physicists and mecanicians are increasingly involved in the development and 
implementation of constitutive models at the microscopic and nano-scale levels based on basic physics 
(or “first principles”) such as statistical quantum mechanics. The intent is to capture the physics of 
interest at the source rather than relying on global and somewhat arbitrary quantities generally defined in 
solid mechanics such as modal damping ratios. 
 

In addition to demonstrating that complex phenomena can be coupled together and simulated 
numerically, scientists are increasingly becoming concerned with the predictive accuracy of their 
numerical models. This emerging field is often referred to as model validation. Here, the central 
question is: How accurately does the model represent reality? It consists of determining the 
predictive quality of numerical simulations and assessing the degree of confidence with which models 
can be analyzed outside of their nominal operating conditions. Caution must however be exercised to 
avoid the common confusion between model verification and model validation. For example, 
consider ancient Greek astronomy. The models developed by Pythagoras, Aristotle and Ptolemy 
between 500 BC and 300 BC dominated Western astronomy for nearly 2,000 years. They exhibited 



 

 

various levels of complexity but all shared the characteristic that our Sun and other planets of our solar 
system did gravitate around the Earth. These models were somewhat consistent with each other, they 
fulfilled their purpose of predicting with remarkable accuracy the cycles of seasons and they even 
matched physical observation. Yet, they were not accurate representation of reality. 
 

In this work, we conform to the U.S. Department of Energy’s definition of verification and 
validation where, basically, verification consists of verifying that equations are solved correctly while 
validation consists of verifying that the equations implemented provide an acceptable representation of 
reality. This publication discusses the concepts of modeling, uncertainty, model validation and 
predictability in the context of large-scale numerical simulations. The discussion is illustrated using an 
engineering application currently dealt with at Los Alamos National Laboratory. References [2-4] offer 
additional details regarding the particular analysis techniques and results to which the discussion refers. 
 
 

II. CONCEPTUAL VIEW OF MODELING AND UNCERTAINTY 
 

In this work, uncertainty is defined as the omitted or unknown part of a mathematical model. This 
definition is somewhat different from the parametric variability or lack-of-knowledge views generally 
agreed upon in the scientific community. It is also implied that numerical simulations should always 
include a representation of the uncertainty associated with a particular model. This is consistent with our 
approach to model validation that states that there is no such thing as model “validation” because all that 
statistical testing can assess is the degree to which a model breaks down, not the degree to which a 
model works. 
 

To illustrate how model order truncation and uncertainty are related to the process of modeling a 
given phenomenon, we consider the example of two elementary particles interacting with each other. 
This is a common problem in quantum mechanics further complicated by extreme uncertainty (the well-
known Heisenberg principle states that position accuracy is bounded by momentum uncertainty, and 
vice-versa) and large scaling differences (heavy particles interact with much lighter particles). Credit 
must be given to Reference [5] for originally discussing this example in the context of uncertainty 
analysis. Our system is formed of two particles, X1 and x2, interacting with each other. The first particle 
denoted by X1 is the primary system of interest. Its dynamic is influenced by a secondary particle 
denoted by x2. We have no real interest in predicting the dynamic of x2 but it is included in the equations 
because of the interaction with the main degree-of-freedom. The equations of motion considered are: 
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In the numerical application, values of ? 1 and ? 2 are kept constant and equal to one. The initial 

conditions of the primary particle X1 are set to one for displacement and zero for velocity. Initial 
conditions in both displacement and velocity for the secondary particle x2 are uncertain and vary 
uniformly among 13 discrete values {10-1; 3x10-1; 7x10-1; 1; 3; 7; 10+1; 3x10+1; 7x10+1; 10+2; 3x10+2; 
7x10+2; 10+3}. Another important characteristic of the system of equations (1) is that the secondary 
particle is very light compared to the other one. The mass of the secondary particle is e2 = 10-6 times 



 

 

smaller than the mass of the primary particle. This introduces ill-conditioning and convergence difficulties 
when, for example, Runge-Kutta finite differences are implemented to solve the system of partial 
differential equations (1). Figure 1 illustrates the output when equations (1) are integrated numerically in 
time. The top figure shows the position X1 and the bottom figure shows the position x2. Note the 
amplitude difference in position between the two degrees-of-freedom. Displacements of the secondary 
particle are approximately three orders of magnitude smaller. As the second mass becomes smaller, the 
response x2 becomes rapidly varying and suitable for statistical treatment. 
 

 
Fig. 1: Responses of the Two Degrees-of-freedom System. 

(Top: Displacement of the primary particle X1. Bottom: Displacement of the secondary particle 
x2. Initial conditions are set to {1; 7} for displacements and {0; 0.3} for velocities.) 
 

We start by solving the fully coupled equations (1) for all possible combinations of initial conditions 
for the secondary particle. The position and momentum of particle x2 can assume 13 discrete values 
each, which leads to a full factorial analysis of 132 = 169 systems. Figure 2 illustrates the position of 
particle X1 versus time obtained for the 10th, 60th, 100th and 150th systems. It can be observed that the 
system of equations (1) spans a wide range of dynamics. Responses range from linear, single degree-of-
freedom oscillators (top left) to damped, linear systems (top right) and systems featuring time varying, 
higher-frequency harmonics (bottom left). The forth system (bottom right) exhibits chaotic behavior and 
a component that eventually grows unstable. Being able to characterize the dynamics of responses is an 
important step of model validation. Feature extraction is further addressed in section V. The information 
generated by solving the equations (1) for all possible combinations of initial conditions is summarized in 
Figure 3. It shows the most probable state of each particle in the position-momentum plane. The most 
probable states of the primary particle X1 are shown on the top half while those of the secondary 
particle x2 are shown on the bottom half. Hence, Figure 3 illustrates the output variability obtained by 
propagating uncertain initial conditions through the forward calculation. 
 



 

 

 
Fig. 2: Four Typical Responses of the Two Degrees-of-freedom System. 

(Initial conditions for X1 and its momentum are kept constant and equal to (1; 0). Initial 
conditions for x2 and its momentum are as follows. Top Left: IC = (10-1; 10-3). Top Right: IC = 
(1; 3x10-5). Bottom Left: IC = (10; 7x10-5). Bottom Right: IC = (10+2; 10-5).) 
 

 
Fig. 3: Most Probable Position-Momentum States of Particles X1 and x2. 

(Top: Mean state values of particle X1. Bottom: Mean state values of particle x2. Note that 
numerical values are plotted on different horizontal and vertical scales. Also noticeable are the 
different correlation structures of the joint probability distributions of particles 1 and 2.) 
 



 

 

The dynamics of particle X1 is now represented as a single degree-of-freedom linear oscillator. The 
coupling with particle x2 is completely ignored and replaced by a random process. This illustrates 
situations where the correct model order is unknown or the model of interaction between particles X1 
and x2 is not available. Obviously, integrating the time response of particle X1 based on a linear 
oscillator representation would result into large prediction errors. However, unavailable modeling 
information can advantageously be replaced by probabilistic information. Figure 4 pictures the most 
probable position-momentum states of the 169 systems for the full factorial analysis. Solutions obtained 
with uniform distributions are shown on the top half and solutions obtained with normal distributions are 
shown on the bottom half. Both results can be compared to the “true” solution shown in Figure 3 (top 
half). It can be observed from a comparison of Figures 3 and 4 that the correlation structure between 
position and momentum is lost. This is expected because the physics-based coupling is replaced with an 
arbitrary random process. Nevertheless, the approximated solutions are consistent with the true 
solutions. Another advantage is that the linear oscillator equations can be solved in a fraction of the time 
required to integrate the coupled equations (1) because they are well posed. 
 

 
Fig. 4: Most Probable States of Particle X1 With Coupling Approximated. 

(The figure shows the mean position and momentum values of particle X1 obtained for each one 
of the 169 systems when the coupling term with particle x2 is replaced by a random process. Top: 
Uniform distributions. Bottom: Normal distributions.) 
 

Uncertainty originates from several practices commonly adopted during modeling such as selecting 
an inadequate model form, truncating the model order, approximating equations and introducing 
parametric variability. Uncertainty cannot be dissociated from modeling. Attempts to explain a complex 
physical experiment by mathematical models define uncertainty. Computer simulations should therefore 
not be attempted without including a representation of the uncertainty associated with modeling 
assumptions. This implicitly defines model validation as an exercise where the consistency between 
model output and reality is assessed away from the model’s nominal operating ranges. The two-particle 



 

 

example illustrates that potentially missing information can be replaced by adequate statistical treatment. 
Since a random process can always be parameterized, hyper-parameters such as the mean, variance, 
covariance structure and higher-order statistics can be calibrated to improve the predictability of the 
computer simulation. An illustration of model calibration via Bayesian inference is provided in section III. 
 

We have mentioned that missing information can be replaced by probabilistic information. Other 
frameworks are available for quantifying and propagating uncertainty that may offer attractive 
alternatives to the theory of probability especially in the event of extreme uncertainty. Among them, we 
cite the Dempster-Shafer theory of possibility and belief [6], the theory of fuzzy sets [7], information gap 
theory and convex models of uncertainty [8]. In the remainder, uncertainty is represented by probability 
density functions. This is a reasonable assumption when dealing with physics or engineering applications 
where reasonable amounts of test data are available and the systems investigated are governed by well-
established theories. 
 
 

III. PREDICTABILITY IN COMPUTATIONAL SCIENCES 
 

Currently, all computational sciences are, to various degrees, struggling with the notion of numerical 
predictability, uncertainty quantification and model validation. The reason is because scientists are 
increasingly relying on numerical models to make predictions and replace physical measurements. As the 
computer models grow in size and complexity, so does the need to assess their validity especially when 
full-scale testing is not available. To illustrate these trends, an example from nuclear physics is provided. 
It involves the inference of a time-varying parameter from uncertain measurements. 
 

When fissionable materials are assembled, the system can become critical, that is, neutron fluxes can 
grow exponentially. The measure of this criticality is a parameter known as the Rossi alpha. It is defined 
as the rate at which the neutron flux grows: 
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In equation (2), the symbols a(t) and y(t) denote the Rossi alpha parameter and the neutron flux, 
respectively. To develop a numerical model of criticality, the value of a(t) must be inferred from the 
measurement of Rossi traces y(cos(2pfRt)). Because the neutron flux increases rapidly during a 
criticality experiment, the time variable is replaced by a pseudo-time cos(2pfRt). Figure 5 illustrates a 
typical amplitude growth of a neutron flux. 
 

The inverse problem thus consists of obtaining the value of a(t) that best reproduces the test data 
{xk; yk}. One formulation among others is Bayesian inference. It has shown great success for this 
particular application and details about the procedure can be obtained from References [9-10]. First, a 
parametric model is chosen for representing the unknown function a(t). This model translates the prior 
knowledge about the Rossi alpha and depends on unknown parameters that are collectively denoted by 
the symbol ?. Next, the sources of uncertainty must be assessed and propagated. The main uncertainty 
for this application resides in the placement of data points from measurement readings. Each point 



 

 

shown in Figure 5 is typically associated with uncertainty in the x-direction and y-direction. For 
simplicity, we denote by s x and s y the standard deviations corresponding to the placement of data xk 
and yk, respectively. This assumes that uncertainty in the placement of points in the (x; y) plane is 
uncorrelated, which is an assumption that test data generally do not support. If the correlation ?xy can 
be ignored, a natural metric that expresses the “distance” between test data and numerical simulation is 
represented by the minus-log likelihood of the observed data given the current model: 
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Other potential sources of uncertainty, not accounted for in equation (3) for clarity, might include 

uncertainty in the nature of the parametric model used to represent the Rossi alpha parameter a(t) and 
uncertainty in the hyper-parameters ?. Smoothness parameters are typically included in the set ? to 
control the prior knowledge about the problem. Prior knowledge plays the same role as “regularization” 
in the resolution of ill-posed inverse problems. Equation (3) also assumes that statistical distributions are 
normally distributed which does not have to be the case. 
 

 
Fig. 5: Amplitude Growth of a Neutron Flux During Criticality. 

(The amplitude of a neutron flux is illustrated on a log-scale as a function of cos(2pfRt) where fR 
denotes the Rossi frequency. The shape of the curve is characteristic of physical measurements, 
however, the values are numerically simulated for the purpose of this illustration.) 
 

Inference of the model a(t) and, potentially, inference of the unknown hyper-parameters ?, is 
achieved according to the Bayes law that states that the posterior distribution of the model given the 
available data or P(a | xk; yk) is equal to the likelihood function P(xk; yk | a) multiplied by the prior 
distribution P(a): 
 

P(a | xk; yk) = P(xk; yk | a) P(a)                                                   (4) 
 



 

 

The objective naturally becomes to maximize the posterior distribution, which translates that the 
model sought is the one that is most consistent with test observation. Similarly, the posterior distribution 
of hyper-parameters given the data or P(? | xk; yk) can be maximized to infer the value of hyper-
parameters ? that are most consistent with test data. At this point, an optimization solver can be 
implemented to maximize the posterior distributions P(a | xk; yk) or P(? | xk; yk). One particularly 
attractive choice is the Markov Chain Monte Carlo (MCMC) algorithm. The MCMC method 
generates a random sequence of parameters a(t) that samples the posterior distribution P(a | xk; yk). 
The main advantage of the MCMC optimization is that sampling can be carried out independently of the 
distribution being sampled. In particular the assumption of normal probability distribution, which is 
encountered in many formulations for the only purpose of allowing tractable analytical derivations, is 
irrelevant. For more details, the reader is referred to Reference [11] where a tutorial of MCMC 
methods is provided. Figure 6 illustrates three realizations of a(t) obtained through MCMC sampling of 
the Bayesian posterior distribution (4). 
 

 
Fig. 6: MCMC Inference of Rossi Alpha a(t) From the Bayesian Posterior. 

(The figure illustrates that several optimal solutions can be obtained that are statistically 
consistent with physical measurements. If enough independent samples can be drawn from the 
posterior distribution, basic statistics about the inferred parameter a(t) can also be estimated.) 
 

The purpose of this example is to illustrate inverse problem solving. In the presence of uncertainty, 
several optimal solutions can be obtained that remain consistent with the physical observation. Exploring 
the posterior distribution therefore becomes critical. If enough independent samples can be drawn from 
the posterior probability distribution, basic statistics about the inferred parameters—mean, variance, 
covariance structure, etc.—can be estimated. Hence, the uncertainty observed through physical 
experimentation can be related to parametric variability of the model, which is important information for 
design and decision-making. 
 

Bayesian inference represents one of many possible formulations among which we cite maximum 
likelihood, Mahanalobis hypothesis testing, Kullback-Leibner entropy and Chernov entropy. The 
statistical techniques developed for hypothesis testing or group classification can generally be applied to 



 

 

formulate inference problems. Methods such as finite element model updating, parameter identification 
and parameter calibration (also referred to as parameter “tuning”) all fall under this general description. 
However, we stress that a calibrated model by no means constitutes a validated model, as commonly 
accepted in the finite element updating community. Validation is fundamentally a statement about 
predictability whereas calibrated models are, at best, only able to match physical measurements at one 
or several design points. 
 
 

IV. ASCI ENGINEERING APPLICATIONS 
 

Quantifying shock transmission through complex, jointed structures has traditionally been possible 
only with experimental methods. These experiments are expensive and time-consuming and thus only a 
few cases can be studied. With the advent of large scale computing capabilities, estimation of the shock 
transmission with numerical models is becoming a tractable problem. The ASCI computing environment 
is being used at Los Alamos to study, among other things, the transmission of these shocks through 
complex, jointed structures. This on-going experiment is summarized to illustrate the validation of 
engineering applications in structural dynamics. 
 
4.1 The Forward Mount Impulse Test 
 

The test article used for the validation experiment consists of several components fabricated from a 
variety of materials. A titanium component designated the “mount” is shown in Figure 7 (top left). All 
other components are connected to the titanium mount. The upper payload mass simulator, which is 
fabricated from 6061-T6 aluminum, is bolted to the three feet on the upper end of the mount. The lower 
payload mass simulator, which is fabricated from carbon steel, is held inside the mount using a tapered 
tape joint. The tapered tape is fabricated from SS-304 stainless steel and is inserted through the thin, 
horizontal slot near the base of the mount. Separate pieces of the tapered tape are driven in, wedging 
the mass simulator against an inner retaining surface. All these components are pictured in Figure 7 
(bottom left). 
 

The lower shell, fabricated from 7075-T4 aluminum, and then anodized, is placed over the titanium 
mount and its rim sits on a ledge just below the threaded portion of the mount. Next, a titanium retaining 
nut threads onto the titanium mount bearing against the upper surface of the lower shell rim. A specified 
torque value is applied. Finally, the upper shell, also fabricated from aluminum, is threaded onto the 
mount. As this second specified torque is applied, the load between the retaining nut and lower shell is 
somewhat reduced. 
 

Figure 7 (right) also shows that the test article is suspended using wire rope. This creates a pendulum 
with a length of about one meter. Pendulum motion is monitored using high-speed photography and fiber 
optic-based displacement sensing. An explosive source is developed to apply an impulsive load to a 
portion of the outside surface of the test article. The source is fabricated from strips of thin explosive 
sheet material. The explosive strips are simultaneously initiated using an explosive lens. The pressure at 
the surface of the test article is moderated with a buffer material made from solid neoprene. Prior to 



 

 

testing, the explosive load underwent a careful characterization to make sure that the correct impulse 
was measured. 



 

 

 
 

 
Fig. 7: Forward Mount and Other Components of the Assembly. 

(Top Left: Titanium forward mount. Bottom Left: Other components of the assembly. From left 
to right, lower shell; titanium mount and bolted mass simulator; retaining nut and upper 
cylindrical shell. Right: Instrumented system, explosive grid and testing fixture.) 
 

The test article is instrumented with 33 strain gages and 6 accelerometers. The strain gages are 
attached to the inside surface of the titanium mount and have an active length of 0.8 mm to obtain 
localized effects. The six accelerometers are Endevco model 7270A-200k and are located on either 
end of both payload mass simulators. Four are oriented laterally in the direction of the delivered impulse 
and two are oriented along the axis of the structure. Measured strains range up to 1.0% and have a 
frequency response of 100 KHertz. Peak accelerations after low-pass filtering at 50 KHertz range up to 
10,000 g’s. The comparison of strain and acceleration responses in Figure 8 (left) indicates that the 
shock wave rapidly propagates through the main joint. The ringing of the mass simulators is attenuated 
after 5-to-6 milliseconds. The sixth acceleration response is used to define the input excitation of a 
shock response spectral (SRS) analysis. The SRS in Figure 8 (right) shows the peak acceleration 
response that would be witnessed by a single degree-of-freedom system whose fundamental frequency 
is set by the horizontal axis. Clearly, most of the resonant dynamics occur between 10 and 30 KHertz, 
which would make analysis techniques based on modal superposition impractical. The SRS estimates 
the acceleration levels that would be witnessed, for example, by an electronic component. 
 



 

 

 
Fig. 8: Typical Impulse Response of the Forward Mount Test Article. 

(Top Left: Strain 1 located behind the explosive grid. Bottom Left: Acceleration 1 located on the 
lower mass simulator. Right: SRS of the 6th acceleration response with 2% modal damping.) 
 

Figure 9 compares the strain responses collected at location 1 (inside the mount, behind the 
explosive grid) during two replicate tests. Only the first 400 microseconds of response after detonation 
are shown. It can be observed that the peak strain and “low-frequency” content are very similar. The 
discrepancy between the two curves is attributed to the variability of the experiment. The main source of 
variability is a tolerance and assembly-positioning threshold that is controlled during these two 
experiments. The comparison illustrates that, in addition to predicting the dynamics of interest, the 
numerical model should also reproduce the variability inferred from physical observations when replicate 
data sets are available. 
 

 
Fig. 9: Comparison of Strain Responses Collected During Two Similar Tests. 

(Responses of strain sensor 1 located behind the explosive grid. Solid, blue line: Response when 
the assembly is closely controlled. Dashed, red line: Response with a “loose” assembly.) 
 



 

 

 
4.2 Finite Element Modeling and Analysis 
 

The explicit finite element model of the test article is developed using the ParaDyn finite element code 
[12]. In general, explicit formulations are preferred for such problems because of their nonlinear nature 
and the fact that numerous contact conditions must be handled. The model has approximately 1.4 million 
8-node hexahedral elements, 56,000 4-node shell elements, 480 contact surfaces and 1.8 million node 
points. It results into 6 million degrees of freedom that include structural displacements and Lagrange 
multipliers defined at the contact interfaces. The large number of contact pairs is required because each 
individual surface, usually circumferential in nature, has to be broken into several individual surfaces to 
accommodate efficient partitioning for the parallel code. Automatic contact capabilities that are currently 
under development in ParaDyn will obviate the need to break the contact into so many surfaces. The 
computational mesh is illustrated in Figure 10. The finite element model is currently run on 504 
processors on the Los Alamos Blue Mountain ASCI computer. Using this number of processors results 
in 1.3 CPU hours for each millisecond of simulation. 
 

 
Fig. 10: Computational Mesh of the Threaded Joint and Bolts. 

(Viewed from the inside of the titanium mount, one of the upper mass simulator’s bolts and a 
section of the retaining nut are visible between the assembly of upper and lower shells.) 



 

 

 
 

Preloading due to assembly of the threaded joints and the tape joint is accomplished in the model by 
implementing an orthotropic thermal coefficient of expansion in specific layers of elements. At the start 
of each analysis, the temperature is increased using a half-cosine time history over 0.2 milliseconds. The 
structure is then allowed to freely respond with no additional input for 0.1 milliseconds before applying 
the explosive impulse. The impulse is applied over the appropriate region of the test article as a pressure 
time history. 
 
4.3 Uncertainty Analysis 
 

Because the contact involves interfaces among stainless steel, carbon steel, anodized 7075-T4 
aluminum, 6061-T6 aluminum, and titanium, precise selection of static and kinetic coefficients of friction 
is not possible. Some of the variables that contribute to the coefficients of friction include surface finish, 
surface hardness and the presence of lubricants. Since these are not known, these coefficients of friction 
are estimated by bounds and allowed to vary between specified limits. Lacking a precise definition of 
the coefficients of friction also leads to unknown levels of preloads. Therefore, the preloads are also 
allowed to vary between specified limits among the different runs. Based on engineering judgment, a 
total of twelve parameters are defined as having a relatively high uncertainty associated with their value. 
These parameters consist of three component preloads, four static and four kinetic coefficients of 
friction and the magnitude of the explosive impulse. 
 

In this section, we illustrate one of the steps that would be involved in a typical validation experiment. 
A parameter effect analysis is performed to determine which of the twelve input parameters are most 
responsible for explaining the total variability of the output. Other steps, not discussed here, would 
include parametric calibration, characterization of the model output’s probability information and 
assessment of the model’s predictive quality. All these analyses share the need to generate response 
surface models (RSM) to replace the expensive, large-scale simulations [13]. Four of the twelve input 
parameters of interest can take two possible values and the remaining eight parameters can take three 
possible values. The total number of runs to build a full factorial analysis would therefore be equal to 24 
x 38 = 104,976, a number that would require nearly 8 years of computational time using 6,000 
processors of a 3 TeraOps ASCI platform! To limit the required simulation time, a subset of 48 runs is 
completed from parameter samples selected using the Taguchi orthogonal array technique [14]. After 
these 48 runs have been completed and the appropriate features have been extracted, a statistical RSM 
of the form 
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is fit to the computer data for each feature of interest. The difference with a conventional response 
surface is essentially that statistical testing and analysis of variance (ANOVA) techniques are used to 
retain only the most significant interaction parameters {a i; ßij}. Linear and second-order coefficients a i 
and ßij are defined as statistics whose probability information is available for further statistical treatment 
such as re-sampling and hypothesis testing. When no other option is available but an extremely sparse 



 

 

sampling of the input space, special care must be brought to selecting a design matrix that avoids 
aliasing. Aliasing in statistical modeling refers to contamination of main (linear) effects by secondary 
(higher-order) effects and is caused by a too sparse sampling matrix. Obviously, any sampling matrix 
must provide the ability to distinguish the variance associated with the linear effect of a variable from the 
other variables. But it can happen that linear effects (such as a i) are confounded or aliased with second 
order or higher effects (such as ßij). With a Taguchi orthogonal array, columns of the design matrix are 
not correlated with other columns and, in addition, are free of interaction with second-order effects. This 
makes for efficient linear screening. 
 

Because the transmission of shock across the mount to the payload components is the primary event 
of interest, errors between the predicted and measured statistical moments of the time history, shock 
response spectrum and power spectral density (PSD) at each accelerometer location are used as 
features. Time histories are restricted to the first four milliseconds following detonation and the SRS and 
PSD analyses are performed from 0-to-50 KHertz with a uniform 2% critical damping for the SRS. The 
first and second statistical moments (mean and standard deviation) are investigated. Hence, a total of 36 
output features are defined (6 accelerometers x 3 criteria x 2 moments). For each one of them, a linear 
statistical RSM is constructed. Statistical tests are implemented to assess the global contribution of each 
input parameter to the total variability observed from the computer simulations. A popular example is 
the R-square (R2) statistics that estimates Pierson’s correlation ratio. It is defined as the ratio between 
the variance that can be attributed to a given effect and the total variance of the data [15]: 
 

( )

( )∑

∑ ∑

=

= =

−

−

−=

data

level
(l)
data

N1j

2
j

N1l N1j

2(l)(l)
j

2

yy

yy

1R

L

L L                                                  (6) 

 

 
Fig. 11: Parameter Contributions Calculated From the Analysis of Variance. 

(Left: ANOVA of accelerations 1-3. Right: ANOVA of accelerations 4-6. The feature analyzed is 
the variance s 2 of the difference between predicted and measured SRS. Percentages show the 
contribution of each input parameter to the total variance of the output feature.) 
 



 

 

A trend is observed for features from all sensors indicating significant effects due to the following five 
parameters: one preload (p1), three kinetic coefficients of friction (p8, p10, p11) and the impulse 
magnitude (p12). The R2 values obtained by analyzing the standard deviation of SRS errors are pictured 
in Figure 11. The six acceleration locations exhibit global sensitivity to at least one of the five parameters 
p1, p8, p10, p11 and p12. For location 2, the other two preloads p2 and p3 are significant but this linear 
RSM only explains 32.4% of the output feature’s total variance. Linear models that do not explain at 
least 50% of the total variance are considered suspect and higher-order parameter interactions should 
be included. This analysis demonstrates that the parameter space can be reduced from a dimension 
equal to twelve to a dimension equal to five, therefore, allowing realistic generation of a higher-order 
RSM’s. 
 
 

V. FEATURE EXTRACTION 
 

In this section, the notion of feature extraction is discussed. Features are defined as small-
dimensional quantities that extract information from physical observation or computer output. Obviously, 
their definition is application-dependent and they should satisfy two other criteria. First, a feature must 
provide insight regarding the physics investigated. Second, it must be sensitive to changes in the input 
parameters, whether “sensitivity” is defined locally or as a global parameter effect (R2 and other 
statistics, ANOVA, etc.). 
 

In linear structural dynamics, conventional features are resonant frequencies, modal damping ratios 
and mode shape vectors. Nevertheless, their application is restricted to stationary and periodic signals 
generated from the response of linear systems. Because non-linearity is increasingly investigated, 
attempts are made to generalize the notion of modal superposition to nonlinear dynamics, for example, 
using the wavelet transform and the proper orthogonal decomposition. Success is documented in 
Reference [16] (wavelet transform) and Reference [17] (Karhunen-Loève transform), among others. 
However, these analysis techniques remain based on the assumption of linearity and their application to 
non-stationary data sets or nonlinear systems is necessarily limited. One of the reasons why slow 
progress is made in areas such as condition diagnostics and health monitoring of complex engineering 
systems is because the features employed do not characterize the dynamics of interest with enough 
accuracy. Another reason often mentioned is that conventional features are not sensitive enough to local 
condition changes such as crack propagation or boundary condition change. Our opinion is that tools 
commonly used in other scientific communities (e.g. physics, statistical sciences and pattern recognition) 
are not exploited to their full potential. 
 

The applicability of pattern recognition techniques is first illustrated using an Earthquake example that 
has recently been publicized and widely distributed over the Internet [18]. On February 28, 2001, a 
magnitude 6.8 Earthquake located thirty miles below the surface and a few miles away from Olympia, 
Washington, moved the ground for 30-to-40 seconds. The recorded Earthquake waveform is shown in 
Figure 12 (top). A sand-tracing pendulum located in the vicinity produced the patterns depicted in 
Figure 12 (bottom right). The smooth curves seen to the outside of the Earthquake “rose” are what is 
normally observed when someone sets the pendulum in motion to make a tracing. The pattern produced 
when the pendulum was started prior to the Earthquake is still visible. It was then overwritten by another 



 

 

pattern resulting from ground motion. Clearly, the difference between these two patterns indicates 
different dynamics more so than a direct comparison between, for example, time series or shock 
response spectra. 
 

0 100 200
Time [ms]  

  
Fig. 12: Records of the February 28, 2001 Earthquake at Olympia, Washington. 

(Top: Time-domain signal. Bottom Left: Sand-tracing pendulum. Bottom Right: Patterns 
produced by the pendulum. The pendulum performs a transform of the original signal analogous 
to phase-amplitude decoupling. A steady-state periodic signal produces the circle-like pattern 
seen on the outside. The transient Earthquake signal produces the twisted pattern at the center.) 
 

The mathematical transformation implemented by the pendulum is very similar to the state-space 
representation of a symmetric dot pattern transform. Its efficiency for characterizing complex dynamics 
is further illustrated with the two-particle interaction model. Consider the four signals y(t) shown in 
Figure 2. They can be transformed into z(t) = a(t)ejf(t) where j2 = –1 and the amplitude a(t) and phase 
f (t) components are defined as: 
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The symmetric dot pattern method transforms the correlation between values y(t) and y(t+t) 
distant of a time shift t  into polar coordinates. This transformation is used in the field of speech 
recognition to express visually, in an easy-to-understand figure, the changes in amplitude and frequency 
content of sound signals. An application to fault diagnosis is presented in Reference [19] where the 
transformation is implemented to diagnose changes in sound signals between health and faulty bearings. 
In our example, the angle shift ? is set to 60 degrees, the amplification factor ? is set to 10.0 and the 
time shift t  is equal to 1/500th of the time record’s length. These parameters are determined somewhat 
arbitrarily. When transformed, the previous four time series produce the patterns shown in Figure 13. 
An immediate advantage is normalization. While the horizontal and vertical scales are all different in 
Figure 2, the four subplots of Figure 13 are contained between –1 and +1, which makes for a 
convenient comparison. Significant differences can be observed between the patterns produced by the 
linear signals (top) and the nonlinear signals (bottom). The chaotic response is also different from the 
other three as indicated by the peculiar distribution of points in the complex plane. 
 

 
Fig. 13: Symmetric Dot Patterns From the Two-particle Systems. 

(Upper Left: System 10; single mode, low-frequency response. Upper Right: System 60; single 
mode, lightly damped response. Lower Left: System 100; high-frequency response with time-
varying frequency. Lower Right: System 150; chaotic and unstable response.) 
 

Comparisons such as those illustrated in Figures 2 and 13 are visually appealing but graphics do 
not provide a quantitative assessment of the difference between data sets. Quantitative measures are 
needed for inference and parametric calibration. This is because inverse problems are generally 
formulated as optimization problems. One solution is to train surrogate models to recognize the 
difference between images and to relate the changes observed to characteristics of the original models 



 

 

or experiments. This is typically how pattern and image recognition techniques proceed [20]. The 
alternative is to further condense the information into low-dimensional features. This is essentially what 
modal frequencies achieve for linear, periodic systems. However, real systems are likely to exhibit 
complex dynamics that combine nonlinear, non-periodic, non-stationary and chaotic behaviors. 
Although many signal processing techniques cannot accommodate this complexity, tools such as fractal 
analysis are available that can. 
 

The fractal of a signal is defined as one of its topological dimension. It represents the number of 
degrees-of-freedom of the corresponding data set in a multi-dimensional space. Obviously, the fractal of 
a smooth curve is one, that of a surface is two, etc. Rigorous mathematical definitions are available for 
more complicated data sets [21]. Fractal models are appropriate for analyzing signals that exhibit some 
form of self-similarity (for example, statistical), strong irregularity and structure on a global scale as well 
as arbitrarily fine scales. An application is detailed in Reference [21] where an input-output model of 
cavitation diagnosis is constructed between the fractal dimension of acoustic pressure measurement and 
the degree of cavitation in a pump. One estimate of the fractal dimension is provided by the Higuchi 
method that models the average evolution of the signal’s increment coefficients ?k,p. Increments for 
samples distant of k intervals in time are computed as: 
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where ?(N;k;p) is defined as the lower integer part of (N-p/k). The index denoted by p in equation (8) 
allows multiple estimates on a single time series and k denotes the time shift considered. The increment 
coefficients ?k,p are averaged over the values of indices p and the Higuchi model assumes a linear 
relationship (on a log-log scale) between <?k>, the averaged increment coefficient at index k, and the 
time shift index k: 
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A simple least-squares fit can be performed to estimate the fractal dimension D. Note that the 

fractal dimension must, by definition, be an integer even if its numerical estimation is not. 
 

Figure 14 (left) illustrates the data points <?k> as a function of the time shift k. The other half of 
Figure 14 (right) shows the fractal dimension D estimated for each system. The curves shown on the left 
of Figure 14 correspond to the four responses of Figures 2 and 13. The mean <?k> is plotted in solid 
line and the 2-s confidence intervals are shown in dashed lines. Very little variability can be observed, 
meaning that the fractal character of the curve is consistent throughout the analysis. The model assumed 
in equation (9) states that straight lines of slopes equal to –D should be observed. This is especially the 
case for the linear responses 10 and 60. 
 

On the right of Figure 14, three main categories of dynamics can be observed. When the initial 
momentum ranges from 10-1 to 1, little energy is provided by the secondary particle x2 and the two-
particle model behaves as a single degree-of-freedom. The corresponding fractal dimension is logically 
found close to one. The second category of dynamic systems corresponds to cases where the energy 



 

 

inputted by the light particle x2 is significant enough to influence the heavy particle X1. Then, the system 
is truly a two-particle system. Figure 14 shows that the fractal dimension is close to two when the initial 
momentum ranges from 3x10+1 to 3x10+2. The last category of dynamic behavior is chaotic with a 
fractal dimension that oscillates between one and two. This is because the dynamics of these systems 
transition very rapidly from single degree-of-freedom linear (D = 1) to multiple degrees-of-freedom 
nonlinear and chaotic (D = 2). It corresponds to cases where the initial momentum of particle x2 is equal 
to 7x10+2 or greater. Except for the case of chaotic behavior, the estimated fractal is insensitive to the 
initial position and only the level of energy inputted by particle x2 matters. 
 

 
Fig. 14: Increments and Fractal Dimensions of the Two-particle Systems. 

(Left: Signal increments <?k> versus time shift k. Right: Fractal dimensions D for each system. 
Shown on the left and from bottom to top are the average increment curves for the 10th, 60th, 
100th and 150th systems. Shown on the right are the fractal dimensions for all 169 systems.) 
 

This example illustrates that powerful features can be implemented that can effectively characterize 
a wide variety of dynamic behaviors. Of course, we cannot stress enough the importance of selecting 
features that are relevant to the application investigated and useful to the analyst. Time-frequency 
analysis techniques encountered in structural dynamics include the power spectral density, power 
cepstrum, cyclo-stationarity analysis, Willer-ville transform, wavelet transform, spectrogram and 
Karhunen-Loève decomposition. Many time-frequency analysis techniques, however, are based on 
assumptions that real-world signals may not always satisfy. General-purpose features can alternatively 
be extracted from probability density functions, shock response spectra, temporal and statistical 
moments (mean, variance, energy, kurtosis, etc.) and fractal analysis. In addition, features can be 
extracted from parametric models best fitted to data sets. The model fitting techniques that have been 
applied to engineering mechanics problems with success include linear regression (such as AR, ARX), 
nonlinear regression (such as ARMA), neural networks, statistical models and kriging models. 
 
 

VI. CONCLUSION: CAN NUMERICAL PREDICTABILITY BE ASSESSED? 
 



 

 

This publication discusses the concepts of modeling, uncertainty quantification, model validation and 
numerical predictability. Not only does uncertainty refer to parametric variability and lack of knowledge, 
but it can also be seen as an integral component of the numerical model. In light of this conception of 
uncertainty, model validation is defined as an attempt to identify regions of the design space where the 
model “breaks down” or uncertainty is too important. Predictability refers to the ability to quantify the 
accuracy of the model in regions of the design space where physical observations are not available. 
Model validation must rely on carefully planed experiments that provide an assessment of reality for the 
largest possible array of configurations and operational conditions. Parametric calibration is a pre-
requisite that permits to reduce some of the discrepancy between physical observation and model 
output but under no circumstance should a calibrated model be considered validated. The issue of 
feature extraction, or how to characterize the dynamics of time series, is also discussed and the 
efficiency of a few techniques is illustrated with a simple model of elementary particle interaction. 
 

The ultimate goal of uncertainty analysis and model validation experiments is to guarantee that 
numerical models accurately represent reality, especially when testing is not an option. In addition, 
confidence in the prediction must be assessed. Assessing predictability based on validation experiments 
is an area of open research to a great extent. Reference [22] develops a Bayesian melding framework 
for statistical inference of simulation models that integrates diagnostic checking, model validation, 
hypothesis testing and model selection methods. The approach proposed builds on conventional 
Bayesian inference, goes beyond parametric calibration but stops short of addressing the predictability 
issue. Another interesting attempt is made in Reference [23]. The authors present a calibration technique 
that integrates the notion of predictive confidence regions by quantifying and propagating residual errors 
between calibrated models and experimental data sets. By systematically quantifying all sources of 
uncertainty, their procedure can assess the prediction’s confidence regions and monitor model 
inadequacy errors. 
 

To the question “Can numerical predictability be assessed?” our opinion is therefore a 
cautious yes given that adequate validation experiments are performed. However, this is a difficult 
problem, far from being resolved. The aforementioned techniques are currently being investigated at Los 
Alamos for assessing the predictive accuracy of computer codes for hydrodynamic and structural 
mechanics applications. 
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